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Dynamics of kinks in one- and two-dimensional hyperbolic models
with quasidiscrete nonlinearities
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We study the evolution of fronts in the Klein-Gordon equation when the nonlinear term is inhomogeneous.
Extending previous works on homogeneous nonlinear terms, we describe the derivation of an equation gov-
erning the front motion, which is strongly nonlinear, and, for the two-dimensional case, generalizes the damped
Born-Infeld equation. We study the motion of one- and two-dimensional fronts finding a much richer dynamics
than in the homogeneous system case, leading, in most cases, to the stabilization of one phase inside the other.
For a one-dimensional front, the function describing the inhomogeneity of the nonlinear term acts as a ‘‘po-
tential function’’ for the motion of the front, i.e., a front initially placed between two of its local maxima
asymptotically approaches the intervening minimum. Two-dimensional fronts, with radial symmetry and with-
out dissipation can either shrink to a point in finite time, grow unboundedly, or their radius can oscillate,
depending on the initial conditions. When dissipation effects are present, the oscillations either decay spirally
or not depending on the value of the damping dissipation parameter. For fronts with a more general shape, we
present numerical simulations showing the same behavior.
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I. INTRODUCTION

In the last few years, partial differential equations w
discrete nonlinearities have been used to model phenom
in fields ranging from physics to biology, including the stu
of pinning of dislocation motions in crystals, breathers
nonlinear crystal lattices, Josephson junction arrays, and
biophysical description of calcium release waves@1–18#. Re-
cently, the discrete one-dimensional stationary version of
Klein-Gordon equation

f tt1gf t5Dfxx1a(
k

d~x2xk!@ f ~f!1h#, ~1!

whereg50 has been analyzed by Flach and Kladko@1# ~see
also references therein!. In Eq. ~1!, f is an order parameter
the non-negative constantg is the dissipation coefficient, an
the positive constantsD and a are the diffusion coefficien
and the amplitude of the discrete nonlinearity, respectiv
The function f is a bistable function~the derivative of a
double-well potential having two equal minima!, i.e., a real
odd function with positive maximum equal tof* , negative
minimum equal to2f* , and precisely three zeros in th
closed interval@a2 ,a1# located ata2 , a0, and a1 . For
simplicity and without lost of generality, we will consider i
our analysisa2521, a050, anda151. The prototype ex-
ample is f (f)5(f2f3)/2. The constanth, assumed to be
small in absolute value, specifies the difference of the po
tial minima of the system, i.e.,f (f)1h is the derivative of a
double-well potential with one local minimum and one gl
bal minimum. Note that Eq.~1! reduces to the Klein-Gordon
equation when(kd(x2xk) is replaced by a constant wit
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appropriate rescaling. In Ref.@1# a first-order perturbation
calculation for the heteroclinic orbits of the correspondi
stationary kink solution for Eq.~1! was presented. Kink so
lutions, connecting the two local minima of the double-w
potential, were also obtained for the sine-Gordon c
f (f)52sin(f), and the Klein-Gordon casef (f)5(f
2f3)/2. Both are particular cases of the functionf (f) as
defined above. Note that the sine-Gordon case is equiva
to the derivative of a double-well potential in a restrict
domain of definition.

In this paper, we study the dynamics of kinks for a qu
sidiscrete version of the Klein-Gordon equation

f tt1gf t5DDf1ab~x,y!@ f ~f!1h# ~2!

in a bounded regionV,Rn, n51,2 with smooth boundary
]V for Neumann boundary conditions on]V. When the
function b5b(x) is one-dimensional andb(x)5(kd(x
2xk), Eq. ~2! reduces to Eq.~1!. Although the analysis pre
sented below will be valid for a general class of positi
differentiable functionsb, we have in mind some particula
cases that approximate a distribution of discrete nonline
ties for largeh, a positive constant defined below.

Case 1. There is a sequence of points on the real line,xk ,
k51, . . . ,N, with N finite or infinite, where the functionb
reaches a maximum

b~x!5 (
k51

N

e2h(x2xk)2
. ~3!

Case 2. There is a sequence of lines in the plane,yk ,
k51, . . . ,N, with N finite or infinite, where the functionb,
independent ofx, reaches a maximum
©2001 The American Physical Society13-1
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b~x,y!5 (
k51

N

e2h(y2yk)2
. ~4!

Case 3. There is a sequence of points in the plane, (xk ,yj ),
k51, . . . ,N, j 51, . . . ,M with N and M finite or infinite,
where the functionb reaches a maximum

b~x,y!5 (
k51

N

(
j 51

M

s~x2xk ,y2yj ;h!,

~5!
where s~x,y;h!5e2h(x21y2).

Case 4. There is a sequence of circles in the plane,r5rk ,
k51, . . . ,N, with N finite or infinite, and wherer represents
the radial polar coordinate, where the functionb reaches a
maximum

b~r!5 (
k51

N

e2h(r2rk)2
. ~6!

We refer to the pointsxk and (xk ,yj ), k51, . . . ,N, and j
51, . . . ,M as quasidiscrete~QD! sites and to the stripesy
5yk and circlesr5rk , k51, . . . ,N as quasi-semidiscret
~QS! sites. We defined to be the minimum distance betwee
two adjacent QD or QS sites. Note that the functionb can be
chosen to depend not only on the spatial variable but also
t. The specific form ofb(x,y,t) will depend on the particula
model. One might, for example, have the product of a s
tially dependent functionb(x,y) with a probabilistic time-
dependent function.

For Eq. ~2! we define the following dimensionless var
ables and parameters:

x̂5
x

d
, ŷ5

y

d
, t̂5

ADt

d
~7!

and

e5AD

a

1

d
, ĝ5

gd

AD
, ĥ5hd2, ĥ5

h

e
. ~8!

Substituting Eqs.~7! and~8! into Eq. ~2! and dropping the ˆ
from the variables and parameters we obtain

e2f tt1e2gf t5e2Df1b~x,y!@ f ~f!1eh#. ~9!

We will consider the case 0,e!1, i.e., when diffusion is
slow,d is large ora is large, and there is a small dissipatio

The homogeneous version of Eq.~9!

e2f tt1e2gf t5e2Df1 f ~f!1eh, ~10!

possesses a traveling kink solution. The point on the line~for
n51) or the set of points in the plane~for n52) for which
the order parameterf vanishes are called the interface
front of the system. For Eq.~10! the front moves according
to an extended version of the Born-Infeld equation@19,20#
06661
n

-

~12st
2!sxx12sxstsxt2~11sx

2!stt2gst~11sx
22st

2!

2ĥ~11sx
22st

2!3/250, ~11!

wherey5s(x,t) is the Cartesian description of the interfac
and ĥ, proportional toh, will be defined later. Planar front
moving according to Eq.~11! with g5ĥ50 ~no dissipation
and both phases with equal potential! move with a constant
velocity equal to their initial velocity. For other values ofg

or ĥ, fronts move with a velocity that asymptotically ap
proaches2ĥ/(g21ĥ2)1/2 as long as the initial velocity is
bounded from above by 1 in absolute value. Linear pert
bations to these planar fronts decay, either in a monotoni
an oscillatory way, to zero ast→` @20#. Circular interfaces
moving according to Eq.~11! with h.0 shrink to a point in
finite time @19,20#. If h,0, then circles shrink to points fo
some initial conditions and for others they grow unboun
edly. Neu@19# showed that forg5h50, closed kinks can be
stabilized against collapse by the appearance of sh
wavelength, small amplitude waves. For the more gen
case, two situations are possible. Either linear perturbat
to a circle decay and curves shrink to a point in finite time
they are still present at the shrinkage point of the circle. N
that Eq.~11!, expressed in terms of its kinematic and ge
metric properties, reads@20#

dv
dt

1gv~12v2!2k~12v2!1ĥ~12v2!3/250, ~12!

wherek is the curvature of the front anddv/dt is the ‘‘La-
grangian’’ time derivative ofv, which is calculated along the
trajectory of the interfacial point moving with the norm
velocity v @20#.

One of the goals of this paper is to determine whether
dynamic behavior of kinks in Eq.~9! differs from its homo-
geneous~discrete! nonlinearity counterpart Eq.~10!. For the
overdamped version of Eq.~2!, which is a parabolic bistable
equation, it has been shown that there are essential di
ences between the homogeneous and nonhomogeneous~dis-
crete! cases, in that the latter exhibits propagation failu
@8,10,17,18,21#.

In Sec. II we present an equation of motion for the fro
of Eq. ~9!, and we briefly describe the method by which
was derived. This equation generalizes Eq.~11! with the
strong nonlinearity accounting for the influence of the fun
tion b on the front motion. In Sec. III we study the evolutio
of one-dimensional fronts. We show that forh50 the func-
tion b acts as a ‘‘potential function’’ for the motion of th
front, i.e., a front initially placed between two maxima ofb
asymptotically approaches the intervening minimum. Wh
hÞ0, fronts that start between two maxima ofb asymptoti-
cally approach an equilibrium point determined byh andb,
producing a kink propagation failure. In Sec. IV we study t
evolution of two-dimensional fronts with radial symmetr
We find that when there is no dissipation circles can shr
to a point in finite time, grow unboundedly, or their radiu
can oscillate, depending on the initial conditions. When d
sipation effects are present, the oscillations decay spirall
not, depending on the value ofg. The final result is the
3-2
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DYNAMICS OF KINKS IN ONE- AND TWO- . . . PHYSICAL REVIEW E 63 066613
stabilization of a circular domain of one phase inside
other phase. Our conclusions appear in Sec. V.

II. FRONT DYNAMICS: THE EQUATION OF MOTION

For Eq. ~9! the law of motion of the interface in two
dimensions is given by

~12st
2!sxx12sxstsxt2~11sx

2!stt2gst~11sx
22st

2!

2
by~x,s!2bx~x,s!sx1b t~x,s!st

2b~x,s!
~11sx

22st
2!

2ĥb1/2~x,s!~11sx
22st

2!3/250, ~13!

whereĥ is proportional toh as will be explained later. Equa
tion ~13! was obtained by carrying out a nonrigorous b
self-consistent singular perturbation analysis fore!1, treat-
ing the interface as a moving internal layer of widthO(e).
We focused on the dynamics of the fully developed lay
and not on the process by which it was generated.
method that we applied is similar to that used in Refs.@20#
and @21# for the study of the evolution of kinks in both th
nonlinear wave equation~10! and the Allen-Cahn equatio
with quasidiscrete sources of reaction@the overdamped ver
sion of Eq. ~2!#. The following basic assumptions wer
made:

~1! For smalle>0 and alltP@0,T#, the domainV can be
divided into two open regions:V1(t;e) and V2(t,e) by a
curve G(t;e), which does not intersect]V. This interface,
defined byG(t;e)ª$xPV:f(x,t;e)50%, is assumed to be
smooth, which implies that its curvature and its velocity a
bounded independently ofe.

~2! There exists a solutionf(x,t;e) of Eq. ~2!, defined for
small e, for all xPV and for all tP@0,T# with an internal
layer. Ase→0 this solution is assumed to vary continuous
through the interface, taking the value 1 whenx
PV1(t;e), 21 whenxPV2(t,e), and varying rapidly but
smoothly through the interface.

~3! The curvature of the front is small compared to
width.

As a first stage in the derivation of Eq.~13! we define,
near the interface, a new variablez5(y2s)/e, which is
O(1) ase→` and then express Eq.~9! in terms of this new
variable. Next we expandf andb asymptotically in power
series ine and substitute these expansions into the differ
tial equation. After equating the coefficients of correspon
ing powers ofe, we obtain two equations. The first can b
reduced to an equation of the typeFzz

0 1 f (F0)50, which
has to satisfyF0(0)50 andF0(61)561, giving a kink
solution. HereF0 represents the leading-order term of t
order parameterf in terms ofz. The second problem is
linear nonhomogeneous second- order ODE. Equation~13! is
obtained by applying the solvability condition~Fredholm al-
ternative! after defining ĥªh@F0(1`)2F0(2`)#/
*2`

` (Fz
0)2dz. Note that for f (f)5(f2f3)/2 ~Ginsburg-

Landau theory!, F0(z)5tanh(z/2) and ĥ53h, whereas for
f (f)5sinf ~sine-Gordon!, F0(z)54 tan21ez2p and ĥ
5(p/4)h.
06661
e

t

r,
e

e

-
-

III. FRONT MOTION IN ONE DIMENSION

For a one-dimensional system, Eq.~13! reads

stt1gst~12st
2!1

b8~s!

2b~s!
~12st

2!1ĥb1/2~s!~12st
2!3/250.

~14!

We concentrate on functionsb of the form~3!, although the
same analysis can be done for a general differentiable fu
tion. We defineu5s andv5st obtaining

H ut5v

v t52gv~12v2!2
b8~u!

2b~u!
~12v2!2ĥb1/2~u!~12v2!3/2.

~15!

The fixed points of Eq.~15! are (u0,0), whereu0 satisfies
g(u)5b8(u)12ĥb3/2(u)50. The tracet and determinant
D of the matrix of the linearized system aret52g

and D 5 @ b9 ( u0 ) b ( u0 ) 2 b82(u0) # / 2b2(u0) 1 ĥb8(u0) /

@2b1/2(u0)#, respectively. Ifĥ50 then the fixed points are
the maxima~unstable! and minima~stable! of b(u). Thus, a
front initially between two maxima ofb, will move and as-
ymptotically approach the intervening minimum. When the
is no dissipation, this behavior is in contrast with the hom
geneous case~11!, where, as was pointed out in the Intro
duction, fronts move with a constant velocity equal to th
initial velocity. In the inhomogeneous case, we can pred
the final position of the front from the structure ofb. In order
to understand the behavior ofg(u) asĥ increases above zer
we consider a functionb(u) with a single peak at 0, i.e.
b(u)5e2hu2

. This function will approximate the more gen
eral Eq.~3! if h@1, so that the influence of peaks on on
another is very small. In this caseg(u)522e2hu2

@hu

2ĥe2(hu2)/2#. For ĥ50, g(u) vanishes atu50 and it is
positive foru,0 and negative foru.0. As ĥ moves away
from zero,û, the root ofg(u), will be given by the solution
of hu2ĥe2(hu2)/250, an equation that always has a sol
tion. If ĥ.0, thenx̂.0, andg(u) is positive forx. x̂ and
negative forx, x̂. If ĥ,0, thenx̂,0. As an illustration, we
can see the shape ofg(u) as ĥ increases in Fig. 1. In sum
mary, asĥ increases or decreases, the behavior of the fron
similar to the caseĥ50, in contrast to the classical homog
neous case~11! where, as noted in Sec. I, fronts with a
initial velocity whose absolute value is bounded from abo
by 1, move with a velocity that asymptotically approache
2ĥ/(g21ĥ2)1/2.

IV. FRONT MOTION IN TWO DIMENSIONS

The analysis of front motion in two dimensions govern
by Eq. ~13! with a function b of type ~4!, reduces to the
analysis of one-dimensional front motion, and we shall n
consider this case further. For radially symmetric functio
b5b(r), and radially symmetric fronts, Eq.~13! for the
radial coordinater of the front reads
3-3
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FIG. 1. ~a! Graph ofb(u) for h51000, x152, x251, x350,
and x4521, x5522. ~b! Graph ofg(u) for h51000, h50, x1

52, x251, x350, andx4521, x5522. ~c! Graph ofg(u) for
h51000, h510, x152, x251, x350, andx4521, x5522. ~d!
Graph ofg(u) for h51000, h520, x152, x251, x350, andx4

521, x5522. The pointsxk are the maxima ofb(u).
06661
r tt1S gr t1
1

r D ~12r t
2!1

b8~r!

2b~r!
~12r t

2!

1b1/2~r!ĥ~12r t
2!3/2. ~16!

We defineu5r andv5r t obtaining

H ut5v

v t52Fgv1
1

u
1

b8~u!

2b~u!
1ĥb1/2~u!~12v2!1/2G~12v2!.

~17!

The linesv561 are trajectories of Eq.~17! in the corre-
sponding phase plane. They define a regionD with the prop-
erty that every curve starting in this region remains inside
for all future time. Here we analyze the caseĥ50 and con-
fine our analysis tou.0. The fixed points of Eq.~17! are
(u0,0), where u0 are solutions~if they exist! of 2b(u)
1ub8(u)50. The tracet and the determinantD of the ma-
trix of the linearized system are given byt52g and D
521/uo

21@b9(u0)b(u0)2b82(u0)#/2b2(u0), respectively.

FIG. 2. Graph of Eq.~18! with b given by Eq.~4! with N52,
r150.5, r251.5, and~a! h550; ~b! h510.
3-4
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The simplest case isb(r)5e2h(r2r1)2
for a given r1.0

(N51). For this caseu05(hr11Ah2r1
214h)/2h and

(u0,0) is a saddle point. ForN.2, assume thatg(u)
52b(u)1ub8(u) has 2N21 isolated roots
u1 ,u2 , . . . ,u2N21 and thatg8(u2k21),0 andg8(u2k.0),
k51, . . . ,N. For the caseg50, dividing the second equa
tion in Eq. ~17! by the first and solving, one obtains

c2u2b~u!1v251, ~18!

wherec25(12v i
2)/ui

2b(ui) and (ui ,v i) are the initial con-
ditions. We can define an ‘‘energy’’ functionE5(1
2v2)/u2b(u). It can be shown thatE is constant on trajec
tories of Eq.~17! and thatu2k , k51, . . . ,N are local minima
of E. Then all trajectories sufficiently close tou2k are closed,
and u2k are nonlinear centers@22#. This means that when
there is no dissipation the radii of circular interfaces clo
enough tou2k oscillate arroundu2k . For Eq. ~4! with h
550 and N52, r150.5 and r251.5, we calculated the

FIG. 3. Phase plane for Eq.~17! with b given by Eq.~4! with

N52, r150.5, r251.5, h550, andĥ50. The dashed lines are th
nullclines of the system and the o are its fixed points.~a! g50; ~b!
g51.
06661
e

fixed points of Eq.~17! using the Newton-Raphson metho
with a tolerance of 0.0001. They arez150.537 228, z2
50.999 165, andz351.513 217. The corresponding value
of D are D(z1)5253.464 832,D(z2)51196.824 463, and
D(z3)5250.436 714. Thenz1 andz3 are saddle points, and
z2 is stable. Since the discriminant,L5t224D of z2, is
24787.297 852,0, z2 is a neutrally stable center forg50,
a stable spiral for 0,g<g0, and a stable node forg.g0,

FIG. 4. ~a! Graph ofb(x,y) given by Eq.~5! with h550. In the
gray scale, white corresponds tob50 and black corresponds tob
51. The distance between neighboring maxima along thex or y
axes is 1.~b! Circle of radius 2.0 embedded in the net given in~a!.
The black part corresponds tof511 and the white part corre
sponds tof521. It serves as the initial condition for Eq.~9!. ~c!
Steady state for the evolution of the initial condition given in~b!
according to Eq.~9! with e50.1, g51, h50, andb given as in
~a!. ~d! Steady state for the evolution of the initial condition give
in ~b! according to Eq.~9! with e50.1, g55, h50, andb given as
in ~a!. ~e! Steady state for the evolution of the initial conditio
given in ~b! according to Eq.~9! with e50.1, g51, h51, andb
given as in~a!. ~f! Steady state for the evolution of the initial con
dition given in ~b! according to Eq.~9! with e50.1, g55, h51,
andb given as in~a!.
3-5
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whereg0 is the value ofg for which L50. In Fig. 2 we
present a graph of Eq.~18! for b given by Eq.~4! with N
52, r150.5, r251.5, h550 ~a!, and h510 ~b!. We ob-
serve that there are shrinking trajectories, oscillatory tra
tories, and growing trajectories, in contrast with the hom
geneous case where all trajectories are shrinking trajecto
given byc2u21v251 with c25(12v i

2)/ui
2 @20#. As h de-

creases, the oscillatory trajectories dissappear, leaving g
ing trajectories, which will ultimately vanish ash→0.

In order to study more generally the behavior of the s
tem away from the fixed points, we present in Fig. 3 t
phase plane forg50 ~a! andg51 ~b!. The dashed lines ar
the nullclines of the system and the ‘‘o’’ are its fixed poin
The trajectories were calculated by solving Eq.~17! using a
Runge-Kutta method of order four. We observe there t
there are different situations according to the initial con
tions. In Fig. 3~a! ~no dissipation!, trajectoriesA, B, andC
correspond to circles that shrink to a point in finite time.
their initial velocity is positive, then their radius grows in
tially to a value bounded byz1 before shrinkage takes plac
TrajectoriesD andJ also correspond to a circles that final
shrink to a point in finite time. In the case ofD, although the
initial conditions are close to those of trajectoryC, the dy-
namics are very different. In addition to shrinkage, trajec

FIG. 5. ~a! Graph ofb(x,y) given by Eq.~5! with h550. In the
color scale, white corresponds tob50 and black corresponds t
b51. The distance between neighboring maxima along thex or y
axes is 1.~b! Circle of radius 2.2 embedded in the net given in~a!.
The black part corresponds tof511 and the white part corre
sponds tof521. It serves as the initial condition for Eq.~9!. ~c!
Steady state for the evolution of the initial condition given in~b!
according to Eq.~9! with e50.1, g51, h50, andb given as in
~a!. ~d! Steady state for the evolution of the initial condition give
in ~b! according to Eq.~9! with e50.1, g55, h50, andb given as
in ~a!.
06661
c-
-
es

w-

-

.

t
-

-

ries can display unbounded growth, represented by trajec
G, and periodic behavior, represented by trajectoriesE and
F. TrajectoriesH and I also correspond to circles growin
unboundedly, but if the initial velocity is negative the
shrink to a valued bounded from below byz3 and then they
start growing. In Fig. 3~b! (g51) we see that trajectoriesA,
B, andC correspond to circles that shrink to points in fini
time after growing to a radius bounded byz1. TrajectoryD
also shrinks to a point in finite time, but it grows initially t
a radius bounded from above byz3 and from below byz2.
As we pointed out before, as a consequence of dissipa
(gÞ0), z2 is a stable spiral. We see that trajectoryE spirals
into z2, and there are no longer periodic trajectories. ForN
.2 we expect the phase plane analysis to be similar to
presented here. In contrast with the homogeneous nonli
wave equation, where any circular front shrinks to a point
finite time, the nonhomogeneous version~13! presents a very
rich dynamics with periodic motion and stabilization of ci
cular domains of one phase inside the other.

In the absence of dissipation there are two ‘‘forces’’ r
sponsible for the motion of the front; the curvature of t
circular front 1/r and the ‘‘potential function’’b. For initial
conditions near enough to the minimum ofb, the two
‘‘forces’’ balance giving arise to nonlinear centers~or spiral
nodes!. Oscillations are possible due to the term 12v2.

FIG. 6. ~a! Graph ofb(x,y) given by Eq.~5! with h550. The
color scale goes from whiteb50 to black b51. ~b! Circle of
radius 2.4 embedded in the net given in~a!. The black part corre-
sponds tof511 and the white part corresponds tof521. It
serves as the initial condition for Eq.~9!. ~c! Steady state for the
evolution of the initial condition given in~b! according to Eq.~9!
with e50.1, g51, h50, andb given as in~a!. ~d! Steady state for
the evolution of the initial condition given in~b! according to Eq.
~9! with e50.1, g55, h50, andb given as in~a!.
3-6
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When dissipation is present the ‘‘balance’’ is still present b
the oscillations decay.

In order to study more general cases than the radi
symmetric we have performed numerical simulations of
original two-dimensional model~9! with e50.1, with the
amplitudeb(x,y) given by Eq.~5!. We have used a split
step semi-implicit time integration method. The gray-sc
portraits of the results are presented in Figs. 4–6. The fig
are organized as follows. As a first picture~a!, each figure
contains two-dimensional~2D! plot of b(x,y). The distance
between neighboring sites ofb(x,y) is always 1, black and
white in the gray scale correspond to a maximum~1! and a
minimum ~0! of b, respectively. Then~b! follows, an initial
circular configuration off(x,y) used for the particular simu
lations. Black and white in the gray scale correspond tof
511 andf521, respectively. The circle is centered at
maximum ofb. Finally, there are several final configuratio
of f(x,y), to which simulations with different sets of param
eters have converged after a long enough run. In particu
Fig. 4 illustrates a series of simulations with the initial circ
of radiusr 052.0. This radius is chosen, so that the bound
of the domainf511 contains several maxima ofb(x,y).
This choice makes the initial configuration especially u
stable and capable of nontrivial subsequent evolution.
deed, as we see from Figs. 4~c!–4~f!, that evolution is sen-
sitive to the parameters of the simulations, such
asymmetry in the potentialh and dissipationg. Figures 5 and
6 represent results obtained for an initial radius close to
one in Fig. 4 (r 052.2), and farther from it (r 052.4). In the
former case@Figs. 5~c! and 5~d!# the evolution converges to
a steady state of a size close to the one obtained for 0
52.0 @compare to Figs. 4~c! and 4~d!#, while in the latter
case@Figs. 6~c! and 6~d!# the size of the resulting steady sta
is different.

V. CONCLUSIONS

In this paper we have presented Eq.~13! as governing the
evolution of a fully developed front in a inhomogeneous v
a
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t

ly
e

e
es

r,

y

-
-

s

e

-

sion of the nonlinear wave equation, Eq.~9!, when e!1.
This equation generalizes the damped version of the Bo
Infeld equation~11! to include the effects of stronger nonlin
earities and accounts for the influence of the nonhomo
neous nonlinear term on the motion of the front. T
motion of interfaces according to Eq.~13! is qualitatively
different from that of the homogeneous counterpart given
Eq. ~11!. This difference arises primarily from the fac
that the functionb acts as a potential function for th
motion of the front. For the one-dimensional case, an ini
front initially placed between two maxima ofb which
for a homogeneous nonlinear term will move with a veloc

that asymptotically approaches2ĥ/(g21ĥ2)1/2 as long as
the initial velocity, bounded from above by 1 in absolu

value, asymptotically approaches a point depending onĥ and
on the structure ofb. For the radially symmetric two-
dimensional case, the dynamics are richer than in the ho

geneous counterpart, where forĥ50 circles shrink to point
in finite time. In the absence of dissipation, circles can shr
to a point in finite time, grow unboundedly, or their radiu
oscillates, depending on the initial conditions. When dissi
tion effects are present, the oscillations decay, spirally or n
depending on the value ofg. The final result is the stabili-
zation of a circular domain of one phase inside the ot
phase.

The evolution of circular interfaces in more complicat
arrangements of QD sites and the evolution of more com
cated fronts, such as convex closed curves, calls for fur
research. We hope to address these questions in a forth
ing paper.
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