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Dynamics of kinks in one- and two-dimensional hyperbolic models
with quasidiscrete nonlinearities
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We study the evolution of fronts in the Klein-Gordon equation when the nonlinear term is inhomogeneous.
Extending previous works on homogeneous nonlinear terms, we describe the derivation of an equation gov-
erning the front motion, which is strongly nonlinear, and, for the two-dimensional case, generalizes the damped
Born-Infeld equation. We study the motion of one- and two-dimensional fronts finding a much richer dynamics
than in the homogeneous system case, leading, in most cases, to the stabilization of one phase inside the other.
For a one-dimensional front, the function describing the inhomogeneity of the nonlinear term acts as a “po-
tential function” for the motion of the front, i.e., a front initially placed between two of its local maxima
asymptotically approaches the intervening minimum. Two-dimensional fronts, with radial symmetry and with-
out dissipation can either shrink to a point in finite time, grow unboundedly, or their radius can oscillate,
depending on the initial conditions. When dissipation effects are present, the oscillations either decay spirally
or not depending on the value of the damping dissipation parameter. For fronts with a more general shape, we
present numerical simulations showing the same behavior.
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[. INTRODUCTION appropriate rescaling. In Refl] a first-order perturbation
calculation for the heteroclinic orbits of the corresponding
In the last few years, partial differential equations with stationary kink solution for Eq(l) was presented. Kink so-
discrete nonlinearities have been used to model phenometations, connecting the two local minima of the double-well
in fields ranging from physics to biology, including the study potential, were also obtained for the sine-Gordon case
of pinning of dislocation motions in crystals, breathers inf(¢)=—sin(¢), and the Klein-Gordon casd(¢)=/(¢
nonlinear crystal lattices, Josephson junction arrays, and the ¢°)/2. Both are particular cases of the functib(p) as
biophysical description of calcium release wajes18|. Re-  defined above. Note that the sine-Gordon case is equivalent
cently, the discrete one-dimensional stationary version of théo the derivative of a double-well potential in a restricted
Klein-Gordon equation domain of definition.
In this paper, we study the dynamics of kinks for a qua-
sidiscrete version of the Klein-Gordon equation

¢n+y¢t=D¢xx+a2k S(x—x[f(¢)+h], (1)

bt yp=DAd+aB(Xy)[f(¢)+h] 2
wherey=0 has been analyzed by Flach and Klafkb(see
also references therginn Eq. (1), ¢ is an order parameter, i, 4 bounded regiof) CR", n=1,2 with smooth boundary
the non-negative constaptis the dissipation coefficient, and ;0 for Neumann boundary conditions o). When the
the positive constant® and « are the diffusion coefficient ¢, ction B=p(x) is one-dimensional angB(x)=3,8(x
and the a_mplitl_Jde of .the discrete.nonlinearity, rfespectively._ %), Eq. (2) reduces to Eq(1). Although the analysis pre-
The functionf is a bistable functionthe derivative of a  genteq pelow will be valid for a general class of positive
double-well potential having two equal m|n|m*ae., areal itferentiable functiongs, we have in mind some particular
odd function with positive maximum equal ", negative aqeq that approximate a distribution of discrete nonlineari-
minimum equal to—¢*, and precisely three zeros in the (o5 for Jarges, a positive constant defined below.

closed intervalla_ ,a, ] located ata_, &, anda, . For Case 1. There is a sequence of points on the realdine,
simplicity and without lost of generality, we will considerin 1 N with N finite or infinite. where the function
our analysisa_=—1, ay=0, anda, =1. The prototype €X- reaches a maximum ’

ample isf(¢)=(¢— ¢%)/2. The constanh, assumed to be

small in absolute value, specifies the difference of the poten-

tial minima of the system, i.ef(¢) + h is the derivative of a N 5

double-well potential with one local minimum and one glo- B(X):I(Zl e 7N, 3

bal minimum. Note that Eq1) reduces to the Klein-Gordon B

equation whenx, 5(x—x,) is replaced by a constant with
Case 2. There is a sequence of lines in the plane,
k=1, ... N, with N finite or infinite, where the functiois,

*Electronic mail: horacio@cs.brandeis.edu independent ok, reaches a maximum
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N
B(X’y):kzl e~ W(yfyk)z. (4)

Case 3. There is a sequence of points in the plangy(),
k=1,... N, j=1,... M with N and M finite or infinite,
where the functiorB reaches a maximum

N M
BOXY)=2 2 a(X—X,Y=Y;;7),
k=1 j=1
(5)

where o (x,y;7)=e" "10¢HY)),

Case 4. There is a sequence of circles in the plarey,,
k=1, ... N, with N finite or infinite, and where represents
the radial polar coordinate, where the functiBrreaches a
maximum

N
Bp)=2 € L (6)

We refer to the pointx, and (x,y;), k=1,... N, andj
=1,... M as quasidiscretéQD) sites and to the stripeg

=y, and circlesp=py, k=1,... N as quasi-semidiscrete
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(1—S7)Syxt 25,8iSy— (148 s — ysi(1+ 52— 5P)

—h(1+s2—s%)%%=0, (11

wherey=s(x,t) is the Cartesian description of the interface,
and h, proportional toh, will be defined later. Planar fronts
moving according to Eq(11) with y=h=0 (no dissipation
and both phases with equal potentialove with a constant
velocity equal to their initial velocity. For other values f

or h, fronts move with a velocity that asymptotically ap-

proaches—h/(y?+h?)Y2 as long as the initial velocity is
bounded from above by 1 in absolute value. Linear pertur-
bations to these planar fronts decay, either in a monotonic or
an oscillatory way, to zero as—o [20]. Circular interfaces
moving according to Eq11) with h>0 shrink to a point in
finite time [19,20. If h<0, then circles shrink to points for
some initial conditions and for others they grow unbound-
edly. Neu[19] showed that fory=h=0, closed kinks can be
stabilized against collapse by the appearance of short-
wavelength, small amplitude waves. For the more general
case, two situations are possible. Either linear perturbations
to a circle decay and curves shrink to a point in finite time or
they are still present at the shrinkage point of the circle. Note
that Eq.(11), expressed in terms of its kinematic and geo-

(Q9 sites. We definel to be the minimum distance between metric properties, read20]

two adjacent QD or QS sites. Note that the funct®noan be

chosen to depend not only on the spatial variable but also on
t. The specific form of3(x,y,t) will depend on the particular
model. One might, for example, have the product of a spa-

tially dependent functiorB(x,y) with a probabilistic time-
dependent function.

For Eq.(2) we define the following dimensionless vari-

ables and parameters:

. X .y . bt
=3 YT g t_T (7)
and
D1 . +vd - , o~ h
€= \/;H’ NGY n=nd%, h=—. (8

Substituting Eqs(7) and(8) into Eq.(2) and dropping the "
from the variables and parameters we obtain

Pyt Eyhi=€Ad+ BxYIF(P)+en]. (9

We will consider the caseQe<1, i.e., when diffusion is

slow, d is large ora is large, and there is a small dissipation.

The homogeneous version of E®)
Pyt 2yp=?Ap+1(p)+eh, (10)

possesses a traveling kink solution. The point on the(fioe
n=1) or the set of points in the plariéor n=2) for which

dv

T +y0(1-vd)—k(1-vd)+h(1-v2)3¥2=0,

(12)
wherex is the curvature of the front ardb/dt is the “La-
grangian” time derivative ob, which is calculated along the
trajectory of the interfacial point moving with the normal
velocity v [20].

One of the goals of this paper is to determine whether the
dynamic behavior of kinks in Eq9) differs from its homo-
geneougddiscrete nonlinearity counterpart Eq10). For the
overdamped version of ER), which is a parabolic bistable
equation, it has been shown that there are essential differ-
ences between the homogeneous and nhonhomogefdisus
cretg cases, in that the latter exhibits propagation failure
[8,10,17,18,21

In Sec. Il we present an equation of motion for the front
of Eq. (9), and we briefly describe the method by which it
was derived. This equation generalizes Efjl) with the
strong nonlinearity accounting for the influence of the func-
tion B on the front motion. In Sec. Il we study the evolution
of one-dimensional fronts. We show that fo+=0 the func-
tion B acts as a “potential function” for the motion of the
front, i.e., a front initially placed between two maxima @f
asymptotically approaches the intervening minimum. When
h+#0, fronts that start between two maxima@fasymptoti-
cally approach an equilibrium point determined fbynd 3,
producing a kink propagation failure. In Sec. IV we study the
evolution of two-dimensional fronts with radial symmetry.
We find that when there is no dissipation circles can shrink
to a point in finite time, grow unboundedly, or their radius

the order parameteg vanishes are called the interface or can oscillate, depending on the initial conditions. When dis-
front of the system. For Eq10) the front moves according sipation effects are present, the oscillations decay spirally or

to an extended version of the Born-Infeld equatj®8,20]

not, depending on the value of. The final result is the
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stabilization of a circular domain of one phase inside the [ll. FRONT MOTION IN ONE DIMENSION

other phase. Our conclusions appear in Sec. V. For a one-dimensional system, H43) reads

Il. FRONT DYNAMICS: THE EQUATION OF MOTION ) ﬁ’(s) ) - 2030
) ] ) S+ 1-s)+——(1-5s)+h S)(1—s7)°“=0.
For Eq. (9) the law of motion of the interface in two rsdlos 2,3(5)( > AHS)(L-si
dimensions is given by (14)
(1_St2)sxx+ 25,85, (— (1+32)5n— yst(1+sz—st2) We concentrate on function® of the form(3), although the
X X

same analysis can be done for a general differentiable func-

By(X,S) = Bx(X,S)Sx+ Bi(X,8) s tion. We defineu=s andv =s; obtaining

2B(X,s) =0
—hBY4x,s)(1+s;—s7)%¥=0, (13 B’ (u)

vi==y(1-v?)—5prs(1-0?) — M) (1-v?)2
(15)

(1+s2—5?)

whereh is proportional tch as will be explained later. Equa-
tion (13) was obtained by carrying out a nonrigorous but
self-consistent singular perturbation analysis éet1, treat- The fixed points of Eq(15) are (Uy,0), whereu, satisfies
ing the interface as a moving internal layer of widit{e).  g(u)=p’(u)+2hB¥%u)=0. The tracer and determinant
We focused on the dynamics of the fully developed layerA of the matrix of the linearized system are=—y

and not on the process by which it was generated. Th _roan _ a2 2 Lo
method that we applied is similar to that used in RE2E] 8nd A =[5 (Uo) B(Uo) = B'*(Ue) 1/ 26°(U) + A" (ug)/

and[21] for the study of the evolution of kinks in both the [2/31/2(”9)]’ respectively. 'fF,‘:_O then the fixed points are
nonlinear wave equatioft0) and the Allen-Cahn equation the maxima(unstabl¢ and minima(stablg of B(u). Thus, a
with quasidiscrete sources of reactithe overdamped ver- front initially between two maxima o, will move and as-
sion of Eq. (2)]. The following basic assumptions were YMptotically approach the intervening minimum. When there
made: is no dissipation, this behavior is in contrast with the homo-
(1) For smalle=0 and allt e[0.T], the domair( can be  9EN€OUS cas€ll), where, as was pointed out in the Intro-
divided into two open regiong? , (t:e) andQ _(t,€) by a duction, fronts move with a constant velocity equal to their
curve I'(t; €), which does not in+ter'secle. Thi_s i’nterface initial velocity. In the inhomogeneous case, we can predict
defined b’yl“&t'e) ={xe Q:h(x,t;€)=01, is assumed to pe the final position of the front from the structure8f In order
smooth, which implies that its curvature and its velocity areto understand the behavior gfu) ash increases above zero
bounded independently @f we consider a functiorB(u) with a single peak at 0, i.e.,
(2) There exists a solutioth(x,t;€) of Eq. (2), defined for  B(u)=e~ 7? This function will approximate the more gen-
small ¢, for all xe Q) and for allte[0,T] with an internal  eral Eq.(3) if #>1, so that the influence of peaks on one
layer. Ase—0 t'his solution is gssumed to vary continuously gnother is very small. In this casg(u)=—2e" rzuz[ U
through the interface, taking the value 1 when _ﬁe,(,,uz)/z]_ For h=0, g(u) vanishes ai=0 and it is

Q4 (t;e), —1 whenxe Q_(t,€), and varying rapidly but . . -
semogghl)f)througle thexirfterfa(cef) varying rapicly bu positive foru<0 and negative fou>0. As h moves away

(3) The curvature of the front is small compared to its from zero,u, the root ofg(u), will be given by the solution
width. of yu—he (")2=0  an equation that always has a solu-
As a first stage in the derivation of E¢L3) we define, tjon. If h>0, thenx>0, andg(u) is positive forx>X and

near the interface, a new variabie= (y—s)/e, which is o iy forc<x. If R<0, thenk<0. As an illustration, we

0O(1) ase—» and then express E) in terms of this new he sh A -
variable. Next we expang and 8 asymptotically in power can see} e shape g{u) ash increases in Fig. 1. In sum-

series ine and substitute these expansions into the differenMary, ash increases or decreases, the behavior of the front is
tial equation. After equating the coefficients of correspond-similar to the casé=0, in contrast to the classical homoge-
ing powers ofe, we obtain two equations. The first can be neous casé11l) where, as noted in Sec. |, fronts with an
reduced to an equation of the tyde,+ f(®° =0, which initial velocity whose absolute value is bounded from above
has to satisfy®%(0)=0 and®°(+1)==+1, giving a kink by 1, move with a velocity that asymptotically approaches
solution. Hered® represents the leading-order term of the —h/(y2+h?)Y2

order parameterp in terms ofz. The second problem is a

linear nonhomogeneous second- order ODE. Equafinis IV. FRONT MOTION IN TWO DIMENSIONS
obtained by applying the solvability conditigfredholm al-

i i - 0 — O _
'}tirn?g\g?Zdzaftﬁ(r)te 1E2?I?cﬂf(h¢;)_ﬂ[(i—(;;;32 ((I)Gi(ns;ogr]/- by Eq. (13) with a function 8 of type (4), reduces to the
oAtz ’ o R 9 analysis of one-dimensional front motion, and we shall not
Landau theory ®7(z)=tanh@2) andh=3h, whereas for consider this case further. For radially symmetric functions,

f(¢)=sing (sine-Gordol, ®°(z)=4tan ‘e~ and h  B=p(p), and radially symmetric fronts, Eq13) for the
= (m/4)h. radial coordinate of the front reads

The analysis of front motion in two dimensions governed
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20 k J We defineu=p andv = p; obtaining
2o \ R P— Ug=v
20 | 1 ﬁ (u)
ve=—| + 5 B (L0 (1-0?).
wlh ] B(U)
(17)
-60 | | 1 1 1 ) . ) )
2 -t 0 ! 2 The linesv=+1 are trajectories of Eq(17) in the corre-
g s sponding phase plane. They define a redowith the prop-
@ erty that every curve starting in this region remains inside it

FIG. 1. (a) Graph of B(u) for 7=1000,x,=2, X,=1, Xs=0, fpr all future time. Here we anglyze thg cdse 0 and con-
andx,=—1, xs=—2. (b) Graph ofg(u) for »=1000,h=0, x,  IN€ our analysis ta>0. The fixed points of Eq(17) are
=2, X,=1, X3=0, andx,=—1, xs=—2. (c) Graph ofg(u) for  (U0,0), Whereu, are solutions(if they exisy of 23(u)
7=1000,h=10, X;=2, X,=1, X3=0, andx,= —1, xs= — 2. (d) +uB’'(u)=0. The tracer and the determinant of the ma-
Graph ofg(u) for =1000,h=20, x,=2, X,=1, x;=0, andx, trix of the linearized system are given by=—y and A
=—1, xs=—2. The pointsx, are the maxima of(u). =— 1/u§+[ﬂ”(uo),8(uo)—,B’Z(UO)]IZ,BZ(UO), respectively.
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FIG. 3. Phase plane for E¢L7) with 8 given by Eq.(4) with
N=2, p;=0.5,p,=1.5, »=50, andh=0. The dashed lines are the
nullclines of the system and the o are its fixed poitas.y=0; (b)
y=1.

The simplest case i8(p)=e~ 7*~"D* for a given p;>0
(N=1). For this caseuy=(np,+ \n?p>+47)/27 and
(ug,0) is a saddle point. FON>2, assume thag(u)
=2B(u)+uB’(u) has N-1 isolated roots
Uq,Us, ... UsNn=1 and thatg,(U2k_1)<o andgl(U2k>0),
k=1, ... N. For the casey=0, dividing the second equa-
tion in Eq. (17) by the first and solving, one obtains
c?u?B(u)+v?=1, (18)
wherec?=(1-v?)/u?B(u;) and (U;,v;) are the initial con-
ditions. We can define an “energy” functiorE=(1
—v?)/u?B(u). It can be shown theE is constant on trajec-
tories of Eq.(17) and thatu,,, k=1, ... N are local minima
of E. Then all trajectories sulfficiently close tg, are closed,
and u,, are nonlinear centerf22]. This means that when

PHYSICAL REVIEW E 63 066613

(a) (b)

() (d)

(e) ®

FIG. 4. (a) Graph ofB(x,y) given by Eq.(5) with »=50. In the
gray scale, white corresponds =0 and black corresponds ®
=1. The distance between neighboring maxima alongxttoe y
axes is 1(b) Circle of radius 2.0 embedded in the net giver(an
The black part corresponds #=+1 and the white part corre-
sponds togp=—1. It serves as the initial condition for E¢). (c)
Steady state for the evolution of the initial condition given(in
according to Eq(9) with e=0.1, y=1, h=0, andg given as in
(a). (d) Steady state for the evolution of the initial condition given
in (b) according to Eq(9) with e=0.1, y=5, h=0, andB given as
in (a). (e) Steady state for the evolution of the initial condition
given in (b) according to Eq(9) with e=0.1, y=1, h=1, andg
given as in(a). (f) Steady state for the evolution of the initial con-
dition given in(b) according to Eq(9) with e=0.1, y=5, h=1,
and B given as in(a).

fixed points of Eq.(17) using the Newton-Raphson method
with a tolerance of 0.0001. They am=0.537228, z,
=0.999 165, andz;=1.513217. The corresponding values
of A are A(z;)=-—53.464832,A(z,)=1196.824 463, and
A(z3)=—50.436 714. Ther; andzz are saddle points, and

there is no dissipation the radii of circular interfaces closez, is stable. Since the discriminant,=72—4A of z,, is

enough tou,, oscillate arroundu,,. For Eq. (4) with
=50 andN=2, p;=0.5 andp,=1.5, we calculated the

—4787.297 85%.0, z, is a neutrally stable center for=0,
a stable spiral for & y=y,, and a stable node foy> vy,
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(a) (b)

L

(d)

FIG. 5. (a) Graph of 3(x,y) given by Eq.(5) with »=50. In the
color scale, white corresponds =0 and black corresponds to
B=1. The distance between neighboring maxima alongxtbey
axes is 1(b) Circle of radius 2.2 embedded in the net giver(an
The black part corresponds W= +1 and the white part corre-
sponds togp=—1. It serves as the initial condition for E¢p). (c)
Steady state for the evolution of the initial condition given(im
according to Eq(9) with e=0.1, y=1, h=0, andp given as in

(c)

(a). (d) Steady state for the evolution of the initial condition given

in (b) according to Eq(9) with e=0.1, y=5, h=0, andg given as
in (a).

where vy, is the value ofy for which A=0. In Fig. 2 we
present a graph of Eq18) for 8 given by Eq.(4) with N
=2, p1=0.5, p,=1.5, =50 (a), and =10 (b). We ob-

PHYSICAL REVIEW E63 066613

(@

(d)

FIG. 6. (a) Graph of 3(x,y) given by Eq.(5) with =50. The
color scale goes from whit=0 to black 3=1. (b) Circle of
radius 2.4 embedded in the net given(@. The black part corre-
sponds to¢=+1 and the white part corresponds #o=—1. It
serves as the initial condition for E¢Q). (c) Steady state for the
evolution of the initial condition given irib) according to Eq(9)
with €e=0.1, y=1, h=0, andg given as in(a). (d) Steady state for
the evolution of the initial condition given ifh) according to Eq.
(9) with e=0.1, y=5, h=0, andg given as in(a).

(0

ries can display unbounded growth, represented by trajectory

G, and periodic behavior, represented by trajectoBEesnd
F. TrajectoriesH and | also correspond to circles growing
unboundedly, but if the initial velocity is negative they

serve that there are shrinking trajectories, oscillatory trajecShrink to a valued bounded from below &y and then they
tories, and growing trajectories, in contrast with the homo-Start growing. In Fig. &) (y=1) we see that trajectories
geneous case where all trajectories are shrinking trajectoriés andC correspond to circles that shrink to points in finite

given by c?u?+v?=1 with c?=(1—v?)/u? [20]. As 7 de-

time after growing to a radius bounded by. TrajectoryD

creases, the oscillatory trajectories dissappear, leaving grov@lso shrinks to a point in finite time, but it grows initially to

ing trajectories, which will ultimately vanish ag—0.

a radius bounded from above lzy and from below byz,.

In order to study more generally the behavior of the sys-As we pointed out before, as a consequence of dissipation
tem away from the fixed points, we present in Fig. 3 the(y#0), z, is a stable spiral. We see that traject@&gpirals

phase plane foy=0 (a) and y=1 (b). The dashed lines are

into z,, and there are no longer periodic trajectories. Ror

the nullclines of the system and the “o” are its fixed points. >2 we expect the phase plane analysis to be similar to that

The trajectories were calculated by solving Etj7) using a

presented here. In contrast with the homogeneous nonlinear

Runge-Kutta method of order four. We observe there thawave equation, where any circular front shrinks to a point in
there are different situations according to the initial condi-finite time, the nonhomogeneous versid3) presents a very

tions. In Fig. 3a) (no dissipation trajectoriesA, B, andC

rich dynamics with periodic motion and stabilization of cir-

correspond to circles that shrink to a point in finite time. If cular domains of one phase inside the other.

their initial velocity is positive, then their radius grows ini-
tially to a value bounded by, before shrinkage takes place.

In the absence of dissipation there are two “forces” re-
sponsible for the motion of the front; the curvature of the

TrajectoriesD andJ also correspond to a circles that finally circular front 1jp and the “potential function”g. For initial

shrink to a point in finite time. In the case DBf although the
initial conditions are close to those of trajectdty the dy-

conditions near enough to the minimum @, the two
“forces” balance giving arise to nonlinear centdrs spiral

namics are very different. In addition to shrinkage, trajecto-nodes. Oscillations are possible due to the term-d?.
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When dissipation is present the “balance” is still present butsion of the nonlinear wave equation, E®), when e<1.

the oscillations decay. This equation generalizes the damped version of the Born-

In order to study more general cases than the radiallynfeld equation(11) to include the effects of stronger nonlin-

symmetric we have performed numerical simulations of thesarities and accounts for the influence of the nonhomoge-
original two-dimensional mode(9) with €=0.1, with the  neous nonlinear term on the motion of the front. The
amplitude B(x,y) given by Eq.(5). We have used a split- motion of interfaces according to E(L3) is qualitatively
step semi-implicit time integration method. The gray-scaleyjfferent from that of the homogeneous counterpart given by
portraits of the results are presen_ted in_ Figs. 4—6. The figurng. (11). This difference arises primarily from the fact
are organized as follows. As a first pictuf@, each figure 5 the functiong acts as a potential function for the
contains two-dimensiondlD) plot of A(x,y). The distance  qiiqn of the front. For the one-dimensional case, an initial
bet.we_en neighboring sites @(x,y) is always 1 black and front initially placed between two maxima o8 which
white in the gray scale correspond to a maxim(inand a for a homogeneous nonlinear term will move with a velocity

minimum (0) of B, respectively. Therib) follows, an initial ) S o movqm
circular configuration ofs(x,y) used for the particular simu- that asymptotically approachesh/(y“+h%)™* as long as
lations. Black and white in the gray scale correspondsto the initial velocity, bounded from above by 1 in absolute

=+1 and¢=—1, respectively. The circle is centered at avalue, asymptotically approaches a point depending and
maximum of3. Finally, there are several final configurations on the structure ofB8. For the radially symmetric two-

of ¢(X,y), to which simulations with different sets of param- dimensional case, the dynamics are richer than in the homo-
eters have converged after a long enough run. In particulageneous counterpart, where fo=0 circles shrink to point
Fig. 4 illustrates a series of simulations with the initial circle i, finite time. In the absence of dissipation, circles can shrink
of radiusro=2.0. This radius is chosen, so that the boundary, 5 noint in finite time, grow unboundedly, or their radius
of the domaing=+1 contains several maxima @i(x,y).  qggillates, depending on the initial conditions. When dissipa-

This choice makes the |n|t|a_l _conflguratlon espema_lly U"tion effects are present, the oscillations decay, spirally or not,
stable and capable of nontrivial subsequent evolution. Ina i X ; .
epending on the value of. The final result is the stabili-

dg:_ed, as we see from Figs.(e—4(f), thgt evolpﬂon IS SEN= 2 ation of a circular domain of one phase inside the other
sitive to the parameters of the simulations, such asphase
gsrﬁnggggr{tl?ngitzoéigi?\i:dn?o?Izsnlegftli(?at rlyr.a[fjlis?gilsoi:rt]g th% The evolution of circular interfaces in more complicated
one in Fig. 4 fo=2.2), and farther from itro=2.4). In the rrangements of QD sites and the evolution of more compli-

former casdFigs. 5¢) and &d)] the evolution converges to cated fronts, such as convex closed curves, calls for further
gs. . €rg research. We hope to address these questions in a forthcom-
a steady state of a size close to the one obtainedr for

=2.0 [compare to Figs. @) and 4d)], while in the latter NG paper.
casdFigs. 6c) and Gd)] the size of the resulting steady state

is different.

V. CONCLUSIONS
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